The Factorization of the Adjugate of a Finite Matrix*

OLGA TAUSSKY
California Institute of Technology
Pasadena, California

Let A be an $n \times n$ matrix with coefficients in an algebraically closed field. Its adjugate $A^{\text {adj }}$ has as determinant the $(n-1)$ st power of the determinant of A. This elementary fact is well known. It does not seem to have been pointed out that the matrix $A^{\text {adj }}$ can be factorized into the product of $n-1$ matrices each with $\operatorname{det} A$ as its determinant. This can be achieved in various ways. Here a factorization will be given in the form

$$
A^{\mathrm{adj}}=\prod_{i=2}^{n} A_{i}, \quad \operatorname{det} A_{i}=\operatorname{det} A
$$

so that in the resulting factorization of

$$
\operatorname{det} A \cdot I=A \cdot A^{\mathrm{adj}}=\prod_{i=1}^{n} A_{i}
$$

with $A=A_{1}$, every factor A_{i} plays the same role.
Let $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ be the characteristic polynomial of A and let $\alpha_{1}, \ldots, \alpha_{n}$ be the characteristic roots. Let $\lambda_{2}, \ldots, \lambda_{n}$ be the zeros of $x^{n-1}+a_{1} x^{n-2}+\cdots+a_{n-1}$ and $\lambda_{1}=0$.

Theorem 1. The adjugate of A is the product $\prod_{i=2}^{n}\left(\lambda_{i} I-A\right)$ and $\operatorname{det}\left(A-\lambda_{i} I\right)=\operatorname{det} A$.

Proof. We first assume $\operatorname{det} A \neq 0$. Then

[^0]\[

$$
\begin{aligned}
A^{n-1} & +a_{1} A^{n-2}+\cdots+a_{n-1} I \\
& =-a_{n} A^{-1}=(-1)^{n-1} \operatorname{det} A \cdot A^{-1}=(-1)^{n-1} A^{\text {adj }} .
\end{aligned}
$$
\]

This proves the first part of the theorem. In order to prove the second part consider the algebraic equation of degree n in λ :

$$
\begin{equation*}
\prod_{i=1}^{n}\left(\alpha_{i}-\lambda\right)=\prod_{i=1}^{n} \alpha_{i} . \tag{1}
\end{equation*}
$$

This equation has n roots λ. They are $\lambda_{1}=0$ and the quantities $\lambda_{2}, \ldots, \lambda_{n}$ defined above. On the other hand, $\prod \alpha_{i}=\operatorname{det} A$ and $\prod\left(\alpha_{i}-\lambda\right)=$ $\operatorname{det}(A-\lambda I)$. This proves the second part.

The case when A is singular follows by specialization. No inverses occur in the factorization.

Theorem 2. Denote $A-\lambda_{i} I$ by $A_{i}, i=1, \ldots, n$. The factorization process of Theorem 1 applied to $A_{i}, i>1$, yields the $A_{j}, j \neq i$.

Proof. Consider, e.g., $i=2$. Then find λ such that

$$
\prod_{i=1}^{n}\left(\alpha_{i}-\lambda_{2}-\lambda\right)=\prod_{i=1}^{n}\left(\alpha_{i}-\lambda_{2}\right) .
$$

Equation (l) implies $\prod_{i=1}^{n}\left(\alpha_{i}-\lambda_{2}-\lambda\right)=\prod_{i=1}^{n} \alpha_{i}$. Hence the λ 's obtained here are the λ 's of Theorem 1 shifted by λ_{2}.

Remarks. 1. In the matrix whose (i, k) element is $\alpha_{i}-\lambda_{k}$ each row or column has the same product. For the columns this follows from (1). For the rows it follows by an easy computation.
2. Special examples are:
(1) $x^{n}+a$. Here all the λ 's are zero.
(2) $(x-c)^{n}$. This is the characteristic polynomial of a Jordan block of dimension n with characteristic root c. Here the λ 's are the products of c and $1-\zeta_{n}$ where ζ_{n} runs through the zeros of $x^{n}-\mathbf{1}$.
(3) Let the field have a characteristic which does not divide $n-\mathbf{1}$. Let A be a Jordan block with characteristic root c; then $A^{\text {adj }}$ is the same Jordan block with characteristic root c^{n-1}. Such a block can be expressed as the $(n-1)$ st power of a triangular matrix

$$
\left(\begin{array}{ccccc}
c & x_{2} & x_{3} & \cdots & x_{n} \\
0 & c & x_{2} & \cdots & x_{n-1} \\
0 & 0 & c & \cdots & x_{n-2} \\
& & & \vdots & \\
0 & 0 & 0 & \cdots & c
\end{array}\right)
$$

where the x_{i} can be determined recursively (see [2]). This was generalized by R. C. Thompson (private communication) to arbitrary matrices in Jordan normal form.
3. For factorizations of $\operatorname{det} A$, see also the recent paper of Jurkat and Ryser [1].

REFFRFNCFS

1 W. B. Jurkat and H. J. Ryser, Matrix factorizations of determinants and permanents, J. Algebra 3(1966), 1-27.
2 O. Taussky, The factorization of the adjugate matrix, Notices Amer. Math. Soc. 13(1966), 492.

Received April 13, 1967

[^0]: * This research was carried out, iu part, under grant GP 3909 of the National Science Foundation.

